概述合成纤维生产过程中毛丝的形成与处理方法
聚酯PET的热稳定性很好,但对杂质很敏感。纯PET在250-300℃开始降解,但在350℃以上才明显释放出挥发性产物。降解的引发过程中包括酯部位的异裂,生成羧酸和乙烯基酯端基,后者可与聚酯PET中的羟乙基酯端基发生酯交换反应放出乙醛,它是最主要的挥发性产物。在更高的温度下还可观测到CO。CO2,CH4,C2H2,C2H4和苯等挥发性产物,因此实际反应更加复杂。熔体输送管线,用气相热媒加。气相热媒总管把热媒蒸气自脱过热器分配到熔体输送管线夹套,由各段的最低点进入。通常。根据纺丝生产的品种不同,熔体输送管线的热媒蒸气温度为280℃-290℃纺丝箱体及其中的纺丝组件是由气相热媒加热的。加热情况与熔体输送管道相似,纺丝箱体通常的操作温度范围是275-285℃。熔体从聚酯终聚釜至生成原丝之前。都是由热媒保温的。如果热媒保温温度过高。熔体输送停留时间较长,熔体大分子降解相对就严重。在经过计量泵增压挤出、经牵引机牵引形成原丝时,原丝就有缺陷。易拉断,产生毛丝。 2.2丝束冷却过程 环吹装置位于纺丝组件正下方的压力风室中,其主要的作用是通过把空气吹入熔体细流而使熔融聚合物快速冷却。环吹装置均匀地分配进入各个纺位的冷却风以保证得到高品质的冷却均匀的丝束。如果丝束冷却吹风洁净度不够、风压及风量设置失当。就会出现并丝、断头。产生毛丝。而针对冷却存在问题,要求环吹内置钢网必须是无尘的,如果发生污染或该纺位的丝束因吹风发生涡旋,则要更换环吹筒;为从制度上保证正常吹风品质,规定环吹筒吹风网必须定期更换,以保证清洁的丝束冷却吹风,避免因吹风原因产生的毛丝。 2.3丝束经过丝道过程 熔体从组件挤出丝束后,要经过上油辊、导丝棒、上下清洁导丝器、纺丝甬道、大小导辊、转向辊、并向辊、牵引机等,如果它们与丝束接触的表面不光滑、有缺损,必对丝束造成伤害,产生毛丝。而针对丝道缺陷,必须加大各辊巡检力度,发现问题,及时处理和更换,经常校正销片间隙,减少对丝束的摩擦,保证丝道处于正常运行状态,减少毛丝的产生。 2.3.1丝道各辊 如果丝道各辊安装不中正。辊表面有缺陷或毛刺,丝束与它们接触时,摩擦加剧,产生毛丝。 2.3.2上下清洁导丝器 上下清洁导丝器是由2个平行的、中间有一小的缝隙的销片组成的,丝束便由这2个销片中间通过。销片间隙可以在O.5-1.2mm范围内调节。其主要作用是:一旦有较多毛丝或疵点出现,就会把丝束撕破或卡断。如果销片间隙调整不当,丝束经过时与它摩擦增大,产生毛丝,甚至把丝束卡断。 2.4纺丝组件工况差 纺丝组件是短纤维装置的关键设备,在短纤维生产中起着过滤清除熔体杂质、混合匀化聚酯熔体、将熔体均匀分配到喷丝板上的每一个微孑L、并从喷丝板挤出形成丝束的作用。 2.4.1组件压力非正常上升 如果组件压力升降剧烈,则原丝纤度、断裂强度和伸长率就会发生较大变化甚至会出现竹节丝,产生断头,出现毛丝。 2.4.2组件漏浆 组件漏浆常见形式有2种:一种是刚上位24h内外漏,熔体从组件入口处渗出,因渗漏量往往较大,熔体呈白色浆液从组件外壁滴下;另一种是上位一周后。熔体从喷丝板中心螺栓处或喷丝板与组件本体结合处渗出,因渗漏熔体经长时间高温滞留后降解,熔体呈褐色或黑色,降解熔体从喷丝板挤出,便形成常见的黑丝。组件漏浆的原因:密封垫圈制作精度及材质缺陷严重影响纺丝组件密封性能。造成组件上机后因密封不严漏浆;喷丝板内密封垫圈制作精度缺陷对纺丝生产影响尤为严重,熔体在组件压力作用下渗入喷丝板上部中心无孑L区,形成熔体死角,这部分不能流动的熔体在经长时间高温,逐渐裂解直至发黄变黑。停位修板时,在裂解气推动下,裂解熔体反渗到喷丝板出丝区,造成纺丝位出黑丝,运行过程中断头率高。喷丝板内密封垫圈泄漏还会造成熔体从喷丝板中心螺栓处渗出。再逐步扩散到喷丝板面,使板面也出现黑浆,黑浆下滴,黏附在运行的丝束上,对它造成损伤,产生毛丝和浆块,严重时。无法进行正常生产。 2.4.3修板精度差 涤纶短纤维装置采取定期修板作业,修板间隔为48h。如果修板精度差,在48h之内就出现毛丝,甚至不定期断头。 2.4.4解决对策 优化组件装砂方案,金属过滤砂品质及配比影响着组件过滤性能,为了在保证组件过滤性能前提下减缓组件升压速度,改用耐压强度高,在25MPa高压下受压不变形的过滤砂,并对装砂方案多次优化,逐步降低组件升压速度;其次,控制组件漏浆,只有提高密封垫圈精度,把密封垫圈厚室偏差控制在O.02mm,最大不超过O.04mm,并选用较好材质的密封垫圈才能解决组件漏浆问题。 3.粘胶长丝生产过程中毛丝的产生与处理方法 粘胶长丝丝筒的毛丝主要分为三种,即绒毛丝、长毛丝和环形毛丝。所谓绒 |